

55340 Developing ASP.NET Core Web Applications | Page 1 of 7

55340 Developing ASP.NET Core Web

Applications

Course Duration: 5 day; / 35 hours;

Instructor-led/ remote online training

Time: 9.00am – 5.00pm

Break: 10.15am – 10.30am /3.15pm –

3.30pm

Lunch: 1.00pm – 2.00pm

WHAT YOU WILL LEARN

In this 5-day course, professional web

developers will learn to develop advanced

ASP.NET Core applications using .NET tools

and technologies. The focus will be on coding

activities that enhance the performance and

scalability of the Web site application.

AUDIENCE

This course is intended for professional web

developers who use Microsoft Visual Studio in

an individual-based or team-based, small-

sized to large development environment.

Candidates for this course are interested in

developing advanced web applications and

want to manage the rendered HTML

comprehensively. They want to create

websites that separate the user interface, data

access, and application logic. The server-side

development will use the C# language, and is

an excellent follow-on course to our

Programming in C# course. The client-side

development will make use of JavaScript, CSS

and HTML5, for which there is also a

corresponding introductory course.

PREREQUISITES

• Experience with Microsoft Visual Studio

and .NET.

• Understand programming in C# and

concepts such as lambda expressions,

asynchronous programming and LINQ.

• Some web development experience using

HTML, CSS and JavaScript.

•

• Understanding of common data formats

such as JSON and XML.

COURSE OBJECTIVES

• Understand the Microsoft Web Technology

stack and choose which technology to

employ while creating an application.

• Design a web application that will meet a

set of business and functional requirements.

• Build a web site using ASP.NET Core Razor

Pages.

• Make use of middleware and dependency

injection in ASP.NET Core MVC applications.

• Use controllers in an MVC application to

manage user interaction, models, and

views.

• Build web applications that use the

ASP.NET Core routing to provide a logical

navigation hierarchy.

• Create views to display and edit data in an

MVC application.

• Construct MVC models that implement

business logic within methods, properties

and events.

• Access a database from within an ASP.NET

Core application by using Entity Framework

Core.

• Design and build a consistent look and feel

across a web application.

• Use JavaScript code to implement client-

side logic to enhance the responsiveness of

an ASP.NET web application.

• Use a development toolchain to manage

client-side packages.

• Build unit tests and use debugging tools

against a web application in Visual Studio.

• Use authentication and authorization

libraries to manage identity and allow

users to access content securely.

• Design secure web applications that are

protected against common attacks.

• Improve web application performance by

implementing caching.

55340 Developing ASP.NET Core Web Applications | Page 2 of 7

• Enable two-way asynchronous

communication between client and server

using SignalR.

• Add Web APIs to an application to support

communication between applications.

COURSE OUTLINES

Module 1: Exploring ASP.NET Core

Microsoft ASP.NET Core web technologies can

help you create and host dynamic, powerful,

and extensible web applications. ASP.NET Core,

is an open-source, cross-platform framework

built on .NET, that allows you to build web

applications. You can develop and run ASP.NET

Core web applications on Windows, macOS,

Linux, or any other platform that supports it.

ASP.NET Core supports an agile, test-driven

development cycle. It also allows you to use

the latest HTML standards and front-end

frameworks such as Angular, React, and more.

Lessons

• Introducing Microsoft Web Technologies

• Getting Started with Razor Pages in

ASP.NET Core

• Introducing ASP.NET Core MVC

Lab 1: Exploring ASP.NET Core

• Exploring ASP.NET Core

After completing this module, students will be

able to:

• Understand the variety of technologies

available in the Microsoft web stack.

• Describe the different programming models

available for developers in ASP.NET.

• Describe the role of ASP.NET Core in the

web technologies stack, and how to use

ASP.NET Core to build web applications.

Module 2: Designing ASP.NET Core MVC

Web Applications

Microsoft ASP.NET Core is a programming

model that you can use to create powerful and

complex web applications. However, all

complex development projects, and large

projects in particular, can be challenging and

intricate to fully understand. Without a

complete understanding of the purposes of a

project, you cannot develop an effective

solution to the customer’s problem. You need

to know how to identify a set of business

needs, and then make technology choices and

plan the web application to meet those needs.

The planning phase assures stakeholders that

you understand their requirements and

communicates the functionality of the web

application, its user interface, structure, and

data storage to the developers.

Lessons

• Development Methodologies

• Planning in the Project Design Phase

• Choosing between Razor Pages and MVC

• Designing Models, Controllers and Views

Lab 1: Designing ASP.NET Core MVC Web

Applications

• Designing ASP.NET Core MVC Web

Applications

After completing this module, students will be

able to:

• Plan the overall architecture of an ASP.NET

Core MVC web application and consider

aspects such as state management.

• Plan the models, controllers, and views

that are required to implement a given set

of functional requirements.

Module 3: Using Razor Pages and

Middleware

ASP.NET Core is a framework that allows us to

build many kinds of applications. In this

module we’ll first look in more detail at

ASP.NET Razor Pages, as a quick way of

building a web application that doesn’t require

the complexity of the MVC model. Then we will

look at middleware, which has a particular

55340 Developing ASP.NET Core Web Applications | Page 3 of 7

meaning in the context of the ASP.NET Core

request pipeline, and potentially allows

multiple separate requests to be handled in a

completely different fashion and receive

separate responses. You will learn how to

leverage the ASP.NET Core framework to

handle requests and responses via existing,

and custom middleware, and how to configure

services for use in middleware and throughout

other parts of the application, such as

controllers. We will also look at Services;

classes that expose functionality which you

can later use throughout different parts of the

application. This is achieved without having to

keep track of scope manually in each

individual location, or instantiate any

dependencies, by using Dependency Injection.

Dependency Injection is a technique used by

ASP.NET Core that allows us to add

dependencies into the code without having to

worry about instantiating objects, keeping

them in memory, or passing along required

dependencies.

Lessons

• Using Razor Pages

• Configuring Middleware

• Configuring Services

Lab 1: Using Razor Pages and Middleware

• Using Razor Pages and Middleware

After completing this module, students will be

able to:

• Build a simple web application using Razor

Pages.

• Use existing middleware to set up an

ASP.NET Core application.

• Understand the basic principles behind

Dependency Injection, and how it is used

in ASP.NET Core.

Module 4: Developing Controllers

ASP.NET Core MVC is a framework for building

web applications by using the Model-View-

Controller (MVC) architectural pattern. The

Controller is essentially responsible for

processing a web request by interacting with

the model and then passing the results to the

view. The model represents the business

layern, and may include data objects,

application logic, and business rules. The View

uses the data that it receives from the

controller to produce the HTML or other output

that is sent back to the browser. In this

module we will focus on developing controllers,

specialized classes which are central to MVC

applications. Understanding how controllers

work is crucial to being able to create the

appropriate model objects, manipulate them,

and pass them to the appropriate views.

Controllers have several methods that are

called ‘actions’. When an MVC application

receives a request, it finds which controller

and action should handle the request. It

determines this by using Uniform Resource

Locator (URL) routing; another very important

concept necessary for developing MVC

applications. We will also see how to maximize

the reuse of code in controllers by writing

action filters.

Lessons

• Writing Controllers and Actions

• Configuring Routes

• Writing Action Filters

Lab 1: Developing Controllers

• Developing Controllers

After completing this module, students will be

able to:

• Add a controller to a web application that

responds to user actions that are specified

in the project design.

• Add routes to the ASP.NET Core routing

engine and ensure that URLs are user-

friendly in an MVC web application.

• Write code in action filters that runs before

or after a controller action.

55340 Developing ASP.NET Core Web Applications | Page 4 of 7

Module 5: Developing Views

Views are one of the three major components

of the Model-View-Controller (MVC)

programming model. You can define the user

interface for your web application by creating

views; a combination of HTML markup and C#

code that runs on a web server. To create a

view, you need to know how to write the HTML

markup and C# code and use the various

helper classes that are built into MVC. You also

need to know how to create partial views and

view components, which render sections of

HTML that can be reused in your web

application. We will also look in more detail at

Razor markup syntax for embedding .NET

based code into webpages.

Lessons

• Creating Views with Razor Syntax

• Using HTML Helpers and Tag Helpers

• Reusing Code in Views

Lab 1: Developing Views

• Developing Views

After completing this module, students will be

able to:

• Create an MVC view and add Razor markup

to it to display data to users.

• Use HTML helpers and tag helpers in a view.

• Reuse Razor markup in multiple locations

throughout an application.

Module 6: Developing Models

Most web applications interact with various

types of data or objects. An e-commerce

application, for example, manages products,

shopping carts, customers, and orders. A

social networking application might help

manage users, status updates, comments,

photos, and videos. A blog is used to manage

blog entries, comments, categories, and tags.

When you write a Model-View-Controller (MVC)

web application, you create an MVC model to

model the data for your web application.

Within this model, you create a model class for

each type of object. The model class describes

the properties of each type of object and can

include business logic that matches business

processes. Therefore, the model is a

fundamental building-block in an MVC

application. We will also look at validation of

user input.

Lessons

• Creating MVC Models

• Working with Forms

• Validating User Input

Lab 1: Developing Models

• Developing Models

After completing this module, students will be

able to:

• Add a model to an MVC application and

write code in it to implement the business

logic.

• Use display and edit data annotations.

• Validate user input with data annotations.

Module 7: Using Entity Framework Core in

ASP.NET Core

Web applications often require a data store for

dynamic information, for example to create a

web application that changes continually in

response to user input, administrative actions,

and publishing events. The data store is

usually a database, but other types of data

stores are also used. In Model-View-Controller

(MVC) applications, you can create a model

that implements data access logic and

business logic. Alternatively, you can separate

business logic from data access logic by using

a repository class that a controller can use to

read from or write to an underlying data store.

When you write an ASP.NET application you

can use the Entity Framework Core (EF Core)

and Language Integrated Query (LINQ)

technologies, which make data access code

very quick to write and simple to understand.

55340 Developing ASP.NET Core Web Applications | Page 5 of 7

In this module, you will see how to build a

database-driven website in ASP.NET Core

using Entity Framework.

Lessons

• Introduction to Entity Framework Core

• Working with Entity Framework Core

• Using Entity Framework Core Database

Providers

Lab 1: Using Entity Framework Core in

ASP.NET Core

• Using Entity Framework Core in ASP.NET

Core

After completing this module, students will be

able to:

• Connect an application to a database to

access and store data.

• Explain EF Core.

• Work with Entity Framework Core.

Module 8: Using Layouts, CSS and

JavaScript in ASP.NET Core

While building web applications, you should

apply a consistent look and feel to the

application. You would typically include

consistent header and footer sections and

navigation controls in all the views. Microsoft

ASP.NET Core uses special templates called

layouts to achieve this, along with cascading

style sheets (CSS) to enhance the appearance

and usability of your web application. You can

also create interactive HTML elements by using

JavaScript to provide client-side code in your

web application, along with client-side

JavaScript libraries.

Lessons

• Using Layouts

• Using CSS

• Using JavaScript

Lab 1: Using Layouts, CSS and JavaScript in

ASP.NET Core

• Using Layouts, CSS and JavaScript in

ASP.NET Core

After completing this module, students will be

able to:

• Apply a consistent layout to ASP.NET

Core MVC applications.

• Add JavaScript code to your web

application.

• Use CSS stylesheets.

Module 9: Client-Side Development

When creating an application, it is important to

know how to develop both client-side and

server-side code for the application. In this

module, you are going to learn client-side tools

that will allow you to create complex web

applications on any scale, including using the

Bootstrap CSS framework to style your web

application. You will learn how to use Sass, a

CSS pre-processor that adds code-like features

such as variables, nested rules, and functions,

that improve the maintainability of complex

CSS stylesheets. You will learn responsive

design principles that allow you to adapt your

web application based on the capabilities of

the web browser or device using CSS media

queries, and how to use a responsive grid

system. Next, you will learn how to set up the

gulp task runner and use it to compile Sass

files during the build and perform bundling and

minification of CSS and JavaScript files, and

how to set up a watcher task to automatically

compile Sass files as you write your code.

Finally, we’ll introduce the Blazor framework

for building an interactive client-side web UI

with .NET.

Lessons

• Responsive Web Design

• Using Front-end Development Tools

• Looking at ASP.NET Core Blazor

Lab 1: Client-Side Development

• Client-Side Development

55340 Developing ASP.NET Core Web Applications | Page 6 of 7

After completing this module, students will be

able to:

• Use Bootstrap and SASS in a Microsoft

ASP.NET Core application.

• Use front-end development tools.

• Ensure that a web application displays

correctly on devices with different screen

sizes.

• Understand ASP.NET Core Blazor

applications

Module 10: Testing and Troubleshooting

The process of software development

inevitably results in coding errors or bugs that

result in exceptions, unexpected behavior, or

incorrect results. To improve the quality of

your web application and provide a good user

experience, you must identify bugs from any

source and eliminate them. In traditional

software development, testers perform most of

the testing at the end of a development

project. However, in recent years it has

become widely accepted that testing

throughout the project life cycle improves code

quality and greatly reduces the quantity of

bugs in production software. You need to

understand how to run tests on individual

components to ensure that they function as

expected before you assemble them into a

complete web application. It is also important

that you know how to handle exceptions when

they occur and handle them correctly to

provide appropriate user feedback, without

leaking information about the application

structure. Finally, by using logging throughout

the application, you can monitor user activities

that might lead to unexpected issues and

troubleshoot production problems by tracing

flows through the application.

Lessons

• Testing ASP.NET Core Applications

• Implementing an Exception Handling

Strategy

• Logging ASP.NET Core Applications

Lab 1: Testing and troubleshooting

• Testing and troubleshooting

After completing this module, students will be

able to:

• Run unit tests to verify code and locate

potential bugs.

• Build a Microsoft ASP.NET Core application

that provides robust exception handling.

• At application logging to your solutions.

Module 11: Managing Security

applications are normally delivered through a

web browser, by means of the public Internet,

to large numbers of users. This means that

security must always be at the forefront of

your mind when building these applications,

because as well as legitimate users, the

application will be exposed to malicious third

parties. Users may have anonymous access, or

they may have a signed-in identity, and you

must decide which users can perform what

actions. Authentication is the act of

establishing a user’s identity, while

authorization is the process where an already

authenticated user is granted access to specific

actions or resources. By utilizing authorization,

you can prevent users from accessing sensitive

material or information and resources intended

for another user or prevent them from

performing certain actions. The costs of

security breaches can be very high, resulting

in loss of data, legal action, and reputational

damage. So, in the final section we will look at

some specific malicious attacks such as cross-

site scripting and SQL injection, and how to

defend against them.

Lessons

• Authentication in ASP.NET Core

• Authorization in ASP.NET Core

• Defending from Common Attacks

Lab 1: Managing Security

• Managing Security

55340 Developing ASP.NET Core Web Applications | Page 7 of 7

After completing this module, students will be

able to:

• basic authentication to your application.

• Configure Microsoft ASP.NET Core Identity.

• Add basic authorization to your application.

• Understand how security exploits work and

how to better defend against them

Module 12: Performance and

Communication

Modern web applications need to be able to

respond quickly to large numbers of user

requests within a small timeframe. Caching

allows you to store common requests, avoiding

the need to perform the same logic repeatedly.

This provides the user with a fast response

time and reduces system resources used in

conducting the logic for the action. By utilizing

various forms of state management, you can

build stateful applications on top of stateless

web protocols, to give responses tailored to

individual user contexts within the same

application. Finally, SignalR is an easy-to-use

bi-directional communications API that is an

abstraction over several different web

communications protocols. This allows you to

build server-side logic to push content to

browser-based web applications in real time.

Lessons

• Implementing a Caching Strategy

• Managing State

• Supporting Two-way Communication

Lab 1: Performance and Communication

• Performance and Communication

After completing this module, students will be

able to:

• Implement caching in a Microsoft ASP.NET

Core application.

• Use state management technologies to

improve the client experience, by providing

a consistent experience for the user.

• Implement two-way communication by

using SignalR, allowing the server to notify

the client when important events occur.

Module 13: Implementing Web APIs

Most web applications require integration with

external systems. Representational State

Transfer (REST) services help reduce

application overhead and limit the data that is

transmitted between client and server systems

using open standards. You need to know how

to expose a Web API that implements REST

services in your ASP.NET application. You also

need to know how to call a Web API by using

both server-side and client-side code to

consume external REST-style Web APIs.

Lessons

• Introducing Web APIs

• Developing a Web API

• Calling a Web API

Lab 1: Implementing Web APIs

• Implementing Web APIs

After completing this module, students will be

able to:

• Create services by using ASP.NET Core

Web API.

• Call a Web API from server-side code.

• Call a Web API from client-side code.

